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Abstract 

A number of extensions to the multisolution approach 
to the crystallographic phase problem are discussed 
in which the negative quartet relations play an impor- 
tant role. A phase annealing method, related to the 
simulated annealing approach in other optimization 
problems, is proposed and it is shown that it can 
result in an improvement of up to an order of 
magnitude in the chances of solving large structures 
at atomic resolution. The ideas presented here are 
incorporated in the program system SHELX-90; the 
philosophical and mathematical background to the 
direct-methods part (SHELXS) of this system is 
described. 

Introduction 

The numerical multisolution approach to the phase 
problem, introduced and made popular by the pro- 
gram MULTAN (Germain, Main & Woolfson, 1970), 
is now involved in at least 70% of small-molecule 
structure determinations. In this paper we shall be 
concerned with the optimum application of this 
approach to the larger 'small-molecule' structures, 
given that powerful number-crunching computers 
with vector architectures are becoming more generally 
available. Since we shall be building on the experience 
gained with the program SHELXS-86, which has 
been described only briefly in the literature (Shel- 
drick, 1985; Robinson & Sheldrick, 1988), some of 
the ideas implemented in this program must first be 
introduced. 

Although the original versions of MULTAN 
assigned up to four fixed phases to define the origin 
and enantiomorph, and then generated starting sets 
by permuting numerical values for several further 
phases, it appears that assigning random starting 
values to all phases is at least as effective (Furusaki, 
1979; Yao Jia-Xing, 1981; Woolfson, 1987). Since it 
is also considerably simpler to program, random'start- 
ing phases were employed in SHELXS-86. The itera- 
tive refinement of numerical phases using the tangent 
formula alone may lead to a false 'uranium-atom' 
solution in symmorphic space groups such as P1 or 
C2, so a number of direct-methods programs 
(Busetta, Giacovazzo, Burla, Nunzi, Polidori & 
Viterbo, 1980; Gilmore, 1984; Sheldrick, 1985) now 
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employ a modified tangent formula which incorpor- 
ates negative quartets (NQRs) as well as the triple 
phase relations (TPRs): 

where 

and 

new tPh = phase of [ a - ' q ]  

= 2]EhiEkEh-J N 1/2 

"q = glEhlEkE,Eh_k_l/N; 

N is the number of atoms (assumed equal here for 
simplicity) per (primitive) unit cell. Note that et and 
11 are complex numbers in this equation and in the 
definition of NQUAL (below). The NQRs are charac- 
terized by large E values for the four primary terms 
and small E values for the three unique cross terms 
k - h ,  l - b ,  k + l  (Schenk, 1974; Hauptman, 1974). 
g is a positive constant which takes the E values for 
the cross terms into account; it is often set to a value 
larger than the theoretical value to compensate for 
the smaller absolute value of 11 compared with or. Our 
tests indicate that the computer time per correct sol- 
ution is minimized when the total number of NQRs 
used is restricted to the 1000 to 8000 most reliable 
(depending on the size of the structure and the type 
of space group). For this purpose it is important to 
use only those quartets for which all three cross terms 
have been measured and found to be weak. On the 
other hand we find that it is advisable to use all TPRs 
connecting the reflections involved in the refinement, 
except for ~1 relations and TPSs consisting of three 
reflections with restricted phases such that the resul- 
tant phase cannot be zero (Giacovazzo, 1974). 

In recent developments of the MULTAN system 
the weak reflections are used in a related manner 
(Debaerdemaeker, Tate & Woolfson, 1988); 
apparently only one of the three cross terms is 
required to have [E[ ~ 1, which allows a much larger 
number of quartets to be used, but the individual 
contributors will be less reliably 'negative'. The phase- 
annealing method described below should be equally 
applicable to this approach. 

Schenk (1972) has described the problems that can 
arise when the tangent formula is applied without 
modification in symmorphic and polar space groups. 
The introduction of NQRs is a major advance, but it 
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is still possible for iterative phase refinement to pro- 
duce an over-consistent solution, with loss of enan- 
tiomorph resolution or a single dominant peak in a 
subsequent Fourier synthesis. This may be a result of 
an inadequate number of NQRs, but can also arise 
in other cases. The data collection strategy for measur- 
ing the weak reflections has a considerable influence 
on the number and reliability of the NQRs; the worst 
approach is to skip the reflection if a prescan indicates 
that it is probably weak, but using the prescan to 
estimate the intensity (with a corresponding large 
e.s.d.) is not much better. Structures with a small 
number of heavy atoms also tend to give a smaller 
number of NQRs. DSlle (1988) and Gilmore & Brown 
(1988) have recommended truncating the resolution 
range in selecting the reflections to be used for phase 
refinement. We find that optimum results are obtained 
when a limiting resolution sphere of about 1 A is 
employed. This increases the number of TPRs for a 
fixed number of reflections, and even more markedly 
increases the number and reliability of the NQRs, 
even though it means that some reflections with lower 
E values are refined. 

The degradation of the tangent refinement can be 
handled by special action for reflections which have 
a greater than its expected value (t~) (Karle & Karle, 
1966; Cascarano, Giacovazzo & Viterbo, 1987) for a 
correct solution. Hull & Irwin (1978) proposed a 
weighting scheme which down-weights these reflec- 
tions; this however introduces the danger of oscilla- 
tion of these weights in alternate cycles. We prefer 
to retain unit weights but to project a onto its expected 
value. A correction of 8~o is applied to the pure tangent 
formula phase q~ (calculated without NQRs), where 

c o s  = I 

and the sign of 8~ is determined by choosing the 
value so that the resulting ~oh is most consistent with 
the NQR sum (if no NQRs contribute to a particular 
reflection, the sign is set randomly). Thus, even if 
there are not many NQRs and they are not very 
reliable, they can make a useful contribution. This 
technique is very effective at driving the solution to 
a small R,, and a negative NQUAL (see below), but 
can only be applied to non-centrosymmetric struc- 
tures. 

The consistency of the TPR contributions can be 
judged by the figure of merit R, (Roberts, Pettersen, 
Sheldrick, Isaacs & Kennard, 1973): 

R,  = Y. w[ c~ - ((a 2)),/2]2/5. " w~2 
h h 

where w is a suitable weight, e.g. 1 / ( a + 5 ) .  [In 
SHELXS-86 and our previous programs the 
denominator was ~ w(a2); the new version is more 
selective provided that it is used in conjunction with 
the a-projection technique (see above) for non- 
centrosymmetric structures.] 

Rather than the usual criterion NQEST (DeTitta, 
Edmonds, Langs & Hauptman, 1975) which rep- 
resents the weighted mean cosine of the strongest 
NQRs, we prefer to use the correlation between a 
and ~1 (Sheldrick, 1985) 

NQUAL = ~. la .   1/ 1 1171. 
h h 

We find that NQUAL is both more negative and also 
more sensitive than NQEST for large structures, for 
which the larger number of NQRs involved in the 
summations for a given h can to a large extent com- 
pensate for the 1 / N  term in the probability 
expression. The two criteria can be combined to give 

CFOM = R,~ if Q > NQUAL 

CFOM = R,~ + ( N Q U A L -  Q)2 otherwise, 

where Q is usually set to a value about 0.1 more 
negative than the expected NQUAL. Finally the phase 
set with the best (i.e. smallest) CFOM is used to 
calculate a Fourier synthesis with coefficients E and 
the final direct-methods phases (E map) which is 
searched to find potential atoms. An iterative pro- 
cedure (Sheldrick, 1982), in which potential atoms 
are eliminated to reduce an R index (calculated for 
E values assuming point atoms) and the remaining 
atoms are used to phase the next E map, provides a 
further figure of merit (RE), and facilitates the 
chemical interpretation of the solution. 

Problem structures 

The approach outlined above has now been exten- 
sively tested by users of the program SHELXS-86, 
and a number of successful applications have been 
reported in Acta Crystallographica, including several 
structures - often in symmorphic space groups - 
which had previously proved resistant to direct 
methods. There seem to be three general areas where 
problems remain: 

(1) Pseudosymmetry problems, usually character- 
ized by a number of non-equivalent solutions with 
approximately equally good figures of merit. Such 
problems are particularly prevalent in the space group 
P1, for fused aromatic systems and for structures with 
heavy atoms on (almost) special positions. Lowering 
the E threshold and thereby increasing the number 
of reflections refined (Biirgi & Dunitz, 1971) often 
improves the discrimination of the figures of merit, 
but the simplest approach is to calculate E maps for 
all the good solutions, not just the best. 

(2) Resolution problems. Experience with a large 
number of structures has led us to formulate the 
empirical rule that if fewer than half the number of 
theoretically measurable reflections in the range 1.1 
to 1.2/~ are 'observed' [i.e. have F > 4 o ' ( F ) ] ,  it is 
very unlikely that the structure can be solved by direct 
methods. This critical ratio may be reduced somewhat 
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for centrosymmetric structures, and for structures 
containing heavier atoms. This rule simply reflects 
the assumption of resolved atoms, which is often 
invoked in direct methods. It may still be possible to 
solve such structures by molecular-replacement 
methods if a sufficiently large and accurate search 
fragment is available. Alternatively, the data collec- 
tion can be repeated more carefully with a larger 
crystal at lower temperature. 

(3) Large structures. The problem may be likened 
to that of finding a needle in a haystack. Even when 
using random starting phases rather than generating 
explicit phase permutations, the computer time per 
correct solution rises steeply with the number of 
atoms in the unit cell. The rest of this paper is con- 
cerned with this class of structure. 

A technique used in SHELXS-86 to reduce the 
computer time required for large structures involved 
dividing the phase refinement into two stages. The 
first stage involved about half the number of reflec- 
tions used in the second, but much less than half the 
number of phase relations (since the number of TPRs 
and NQRs rises rapidly with the number of reflections 
used). The same general procedure was used for the 
selection of both phase sets. Reflections with the 
highest E values were selected, taking initially about 
20-50% more than required. All TPRs linking these 
reflections were used to estimate (a 2) for each reflec- 
tion. The required number of reflections with the 
highest (a 2) values was then selected. Further 
optimization of the reflection set would run the risk 
of accentuating pseudosymmetric features of the 
structure, in extreme cases by the complete elimina- 
tion of weakly linked parity groups. The computer 
time required for phase refinement was determined 
primarily by the number of phase relations. On the 
basis of the figures of merit at the end of the first 
stage, only the best (say) 10% phase sets were refined 
further. The phase relations for the first stage could 
be stored in the main computer memory and did not 
need to be read in from the disk. With a smaller 
number of reflections, the reduced multimodality of 
phase space should increase the chances of finding 
the solution, but at the cost of increasing the mean 
phase error. For straightforward test structures this 
filter procedure did indeed reduce the average com- 
puter time per correct solution appreciably. For large 
structures (including some of those subsequently 
solved by phase annealing) it often resulted in repeti- 
tion of the same wrong solution. One explanation is 
that the correct solution may have figures of merit at 
the end of the first stage that do not place it amongst 
the best 10%. A further explanation (if we assume that 
phase refinement corresponds to the minimization of 
some target function) is that false minima are usually 
broader but shallower than true minima, because the 
phase relations are unlikely to have their individual 
minima so closely in phase for an accidental solution. 

If the minimization procedure cannot escape from a 
minimum, then the chance of random starting phases 
falling in the catchment area of a broad but shallow 
minimum will be greater than that of a narrow but 
deep minimum. 

Phase annealing 

Kirkpatrick, Gellatt & Vecchi (1983) described a very 
generally applicable method of combinatorial 
optimization which they applied to the design of 
computer chips and to the travelling salesman prob- 
lem. This simulated annealing procedure may be 
described by analogy with statistical thermo- 
dynamics. It is necessary to define an algorithm by 
which the system can be brough into a state of thermo- 
dynamic equilibrium described by a temperature T. 
The annealing is then achieved by lowering the tem- 
perature slowly. The energy of the system is given by 
the sum of the potential energy (the function to be 
minimized) and the kinetic energy. The form taken 
by the kinetic energy depends on the system being 
considered, but involves some random behaviour of 
the individual contributors. The presence of the 
kinetic energy makes it more likely that the system 
will escape from broad shallow minima than from 
narrow deep minima, so slow cooling increases the 
chance of finishing in a global rather than a local 
minimum, consistent with the annealing analogy. 

Simulated annealing has recently (Kuriyan, 
Briinger, Karplus & Hendrickson, 1989) established 
itself as an effective method for the intermediate 
stages of refinement of protein structures using a 
potential energy function which includes the X-ray 
data. The kinetic energy is provided naturally by a 
molecular-dynamics simulation of the motion of the 
individual atoms, and enables side-chain conforma- 
tions to escape from false local minima. For systems 
which cannot be described in terms of continuous 
motion, the Metropolis algorithm (Metropolis, 
Rosenbluth, Rosenbluth, Teller & Teller, 1953) 
enables the system to approach thermodynamic 
equilibrium by imposing a Boltzmann distribution. 
Each time a parameter is changed, the energy E of 
the system is calculated. If the energy decreases, the 
jump is always made. If AE is positive, the probability 
P of the new state relative to the old is calculated 
from the Boltzmann formula exp ( - A E / k T ) ,  where 
k is a constant. If P is greater than a random number 
in the range 0 to 1, the jump is made, but if P is less 
the original state is retained. 

To see how simulated annealing can be applied to 
direct methods (we shall name this phase annealing) 
it is necessary to reformulate Cochran & Wolfson's 
(1955) formula for centrosymmetric structures, 

P+ =½+½tanh (a /2) ,  

where P÷ is the probability that Eh takes the sign of 
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a. For positive a, P÷ measures the probability of the 
lower-energy state, and P_ = 1 - P÷ is the probability 
of the higher state. Thus the Boltzmann ratio is given 
by 

P_/P+ = exp ( - a )  

so all that is needed is to multiply a by/3, a control 
variable inversely proportional to the temperature! 
In a slight variation of the Metropolis algorithm we 
take the higher-energy P_ state only if (P_/2P÷) 
(which must be less than ½) is greater than a random 
number R in the range 0-1, otherwise we choose the 
lower-energy state (i.e. the phase given by the 
modified tangent formula). 

In the classical applications of the Metropolis 
algorithm, a random change is made; for example a 
spin is 'flipped' (in the spin-glass problem) or two 
paths are interchanged (in the travelling salesman 
problem and in computer chip optimization). The 
probability of this change is then estimated via the 
Boltzmann formula and tested against a random num- 
ber to see whether the change should be made or not. 
Often in such applications a direct refinement (i.e. 
T =  0 in the Boltzmann formula) is known to be 
ineffective because of the large number of local 
minima; practical tests have shown that for such 
applications the simulated annealing algorithm is 
computationally much more efficient than this T = 0 
'steepest descent' method combined with many ran- 
dom starting configurations. The direct-methods 
problem (for centrosymmetric structures) is concep- 
tually very similar, but with a comparatively small 
number of local minima - otherwise multisolution 
tangent refinement would not be so successful - so 
the phase annealing approach appears promising. On 
the other hand, if we are designing a computer chip, 
a local minimum which is almost as good as a global 
minimum is an entirely acceptable solution; for direct 
methods this may not be good enough, and indeed 
the 'correct' solution does not necessarily correspond 
to the global minimum of any function wla[ch can be 
calculated quickly! Thus multiple-phase starting sets 
are still a sine qua non. 

The above centrosymmetric formula can also be 
applied to restricted phases in non-centrosymmetric 
space groups. After testing a variety of formulae we 
have chosen to calculate general phases in non- 
centrosymmetric structures by adding A~0 to the phase 
obtained by the modified tangent formula (or projec- 
tion method if a > (a2)~/2), where 

cos (A~o) = [4/3a + In (R)]/[4/3a - I n  (R)], 

where the sign of A~0 is assigned at random and R is 
a random number between 0 and 1. Thus cos (A~0) is 
in the range -1  to +1 and approaches +1 in the limit 
of large/3a, as required. It should be emphasized that 
this formula is purely empirical, and that the numeri- 
cal factor of 4 has been chosen to give similar mean 

Table 1. CFOM distribution after 50 and 250 phase 
annealing cycles at constant temperature (initial 

Boltzmann factor B) for the LOG test structure 

C F O M  
r a n g e  B = 0 .0  B = 0.1 B = 0 .2  B = 0 .3  

50 250 50 250 50 250 50 250 

0.05-0.06 2 3 0 0 0 0 0 0 
0.06-0.07 21 27 0 0 0 0 0 0 
0.07-0.08 5 3 0 2 0 0 0 0 
0.08-0.09 1 0 3 7 0 0 0 0 
0.09-0.10 0 0 4 22 0 0 0 0 
0.10-0.11 0 0 13 32 5 1 0 0 
0.11-0.12 0 0 7 15 2 2 0 0 
0.12-0.13 0 0 6 13 4 5 0 0 
0.13-0-14 0 0 4 5 5 14 0 0 
0.14-0-15 1 1 0 0 4 31 0 0 
0.15-0.16 5 8 0 2 6 25 0 0 
0.16-0.17 5 16 0 0 9 20 0 2 
0-17-0.18 18 23 0 0 6 16 1 3 
0.18-0.19 16 28 0 1 3 3 3 2 
0.19-o.20 21 17 3 o o 2 2 10 
0.20-0.21 14 23 3 5 1 2 3 3 
0.21-0.22 14 21 5 8 0 4 6 11 
0.22-0.23 17 22 5 6 2 1 6 11 

absolute phase shifts for general and restricted phases 
at the start of the phase determination (random 
phases). 

If this phase annealing is performed with infinite 
/3 (zero T) it will correspond exactly to a phase 
refinement using the tangent formula as modified 
above. If/3 is zero (infinite T) the phases will simply 
remain random (unconstrained maximum entropy). 
If the temperature is slowly lowered, the well defined 
phases (high a)  will be subject to smaller fluctuations 
than those with low a. Thus phases linked by strong 
phase relations will tend to become established earlier 
in the phase determination procedure, whilst the 
remaining phases are still free to explore phase space. 
If a 'good' (but not necessarily correct) solution is 
found it will remain more stable than a phase set with 
low mean a. 

Since the appropriate value of/3 depends on the 
structure, it is more convenient to discuss the perform- 
ance of the phase annealing in terms of B, the esti- 
mated initial Boltzmann ratio for random starting 
phases./3 is estimated as - In  (B) divided by the mean 
(over all reflections employed) of ((a2)) 1/2 (calculated 
as described by Germain, Main & Woolfson, 1970). 
This approximation assumes the centrosymmetric 
formula and ignores the contributions of the NQRs, 
but is adequate since only an order of magnitude is 
required. Table 1 illustrates the distribution of CFOM 
values obtained for various B values after 50 and 250 
phase annealing cycles at constant 'temperature' for 
the loganin test structure (Jones, Sheldrick, GliJsen- 
kamp & Tietze, 1980). For B = 0 (which corresponds 
to T = 0) the correct solutions are clearly separated 
from the rest, but the number of correct solutions 
only increases a little between 50 and 250 cycles. That 
it increases at all suggests that it is an oversim- 
plification to regard tangent refinement as a pure 
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Table 2. Direct-methods parameters and final figures of merit for seven test structures 

Structure  code  L O G  S U O A  PEP1 N E W Q B  B H A T  M B H 2  H O P S  
Space  g roup  P212t2t  P212t2t  P21212t P1 Pc P1 R 3 ( h e x )  

N/ceU 108 188 340 124 84 54 243 
n(E) for phase annealing (p.a.) 139 190 257 254 184 263 156 
n(TPR) for p.a. 1235 1801 2634 1144 1736 1928 2233 
n(NQR) for p.a. 191 144 896 80 637 609 494 
n(E) full 219 320 455 448 304 467 253 
n(TPR) full 4625 9227 13922 5225 6333 8661 7583 
n(NQR) full 1080 1312 2024 1147 2840 6216 2873 
n(E) for R,~ 295 463 656 671 304 630 267 
n(TPR) for R~ 8229 18494 27894 10472 6333 14724 8386 
Final R~ 0.080 0.095 0.098 0.078 0.070 0.036 0.052 
Final NQUAL -0.70 -0.36 -0.62 -0.84 -0.74 -0.99 -0.80 
Time per phase set (s) 0.13 0.19 0.34 0.05 0-22 0.31 0.23 

The time corresponds to 25 cycles of phase annealing followed by four cycles of refinement (three for NEWQB). The number of reflections used in each 
stage n(E) was chosen automatically using an empirical algorithm based on the cell volume and space group. All available TPRs were used in all tests, 
but n(NQR) was restricted in some cases. The references to the test structures are: 

LOG: Jones, Sheldrick, Gliisenkamp & Tietze (1980). 
SUOA: Oliver & Strickland (1984). 
PEPI: Antel, Sheldrick, Bats, Kessler & Miiller (1990). 
NEWQB: Grigg,. Kemp, Sheldrick & Trotter (1978). 
BHAT: Bhat & Ammon (1990). 
MBH2: Poyser, Edwards, Anderson, Hursthouse, Walker, Sheldriek & Walley (1986). 
HOPS: Hopf, Lehne & Jones (1990). 

Table 3. Number of correct solutions per 10 000 tries as a function of the initial Boltzmann factor B for a cooling 
schedule of 25 cycles with the temperature multiplied by 0.95 after each cycle, followed by four cycles of phase 

refinement (three for NEWQB) 

Structure  code  L O G  S U O A  PEP1 N E W Q B  B H A T  M B H 2  H O P S  

B =0.0 206 6 1 1 26 469 56 
0.1 488 42 17 11 77 1015 201 
0-2 564 44 17 16 91 942 211 
0.3 644 50 25 20 97 825 184 
0-4 724 48 18 21 77 707 180 
0.5 718 25 10 14 47 619 144 
0.6 566 2 5 8 38 474 82 

minimization procedure. As B increases all the 
CFOM values increase, and the percentage of correct 
solutions grows with the number of cycles performed. 
Finally for B = 0-3 or higher it is no longer possible 
to distinguish the correct solutions'from the rest 
because all CFOM values are high (high kinetic 
energy). In addition, the fluctuations of the distribu- 
tion from one cycle to the next increase appreciably 
with B. 

Computational efficiency 

The reliability of individual phase relations decreases 
with increasing N, so we need to use more phase 
relations per reflection in the final refinement to 
obtain the same phase accuracy and quality of figures 
of merit for larger structures. Since the phase anneal- 
ing stage will be rate determining and we are deliber- 
ately introducing noise into it, it makes sense to 
perform it using only the 50-60% of reflections with 
the largest (a2) values. In contrast to the filter pro- 
cedure described above, all phase sets are then finally 
refined for three cycles (centrosymmetric) or four 
(non-centrosymmetric) with the full number of phases 
and relations. The selectivity of R~ can be improved 
further by including summations for reflections 
additional to those used for the phase refinement. 

The modified tangent formula and phase annealing 
procedure are particularly suitable for vector process- 
ing on modem computers with parallel architectures. 
All that is necessary is to process a suitable number 
M (we usually use 128) of phase sets in parallel. All 
rate-determining stages can be formulated as vectoriz- 
able loops over the M phase sets. Even on scalar 
machines, this brings an appreciable bonus, because 
various overheads such as reading phase relations 
from the disk occur only once per K phase sets. All 
the tests reported here were performed on an IBM- 
3090 300E computer (with vector processor), using 
the FORTVS2 compiler which automatically vector- 
ized the critical loops. The vectorized version was 
about 3.7 times faster than the non-vectorized for 
these loops and about 3.0 times faster for the complete 
structure solution run. Preliminary tests with Cray 
and Convex computers also resulted in automatic 
vectorization of the critical loops. 

Practical tests 

Tables 2 and 3 illustrate some practical tests using 
seven structures selected from a test bank of direct- 
methods structures that is available from the author. 
The first three were chosen to illustrate the effect of 
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varying the size of the structure for a given (well 
behaved) space group, the remaining four to illustrate 
symmorphic and/or  polar space groups. In all seven 
cases it was known from extensive tests that the 
correct solution could be recognized on the basis of 
the figures of merit alone. Chance can play a consider- 
able role in direct methods, so to obtain a statistically 
significant number of solutions about 10000 (or 
more) phase sets were refined for each of the entries 
in Table 3. Although increasing the number of phase 
annealing cycles increases the number of correct sol- 
utions, there comes a point where it would be more 
efficient in terms of computer time to process different 
random starting phase sets instead. So for each entry 
in Table 3, 25 cycles of phase annealing were per- 
formed starting with the given Boltzmann ratio B (for 
random phases) and multiplying the temperature by 
0.95 after each cycle. It can be seen that this is a good 
general strategy with an initial B in the range 0.2 to 
0.4; the exact value of B is not very critical. Further 
tests confirmed the trend that a smaller initial B gives 
slightly better results in polar space groups, and 
showed that the number of phase annealing cycles 
could be reduced in such cases. Doubtless the cooling 
schedule could be tuned for each individual structure, 
but this would require knowing the structure. 

For the test structures in Tables 2 and 3, a 'correct' 
solution is one which (a) had a CFOM value which 
clearly separated it from the 'incorrect' solutions, and 
(b) after the usual Fourier recycling gave a peak list 
in which all atoms were higher than any spurious 
peaks. Criterion (b) was relaxed a little for PEP1, 
since one phenyl ring and the solvent molecules 
showed appreciable thermal motion; a typical final 
map for PEP1 had 78 of the expected 80 unique 
non-solvent atoms in the top 80 peaks, and about half 
of the solvent also present in the peak list. Almost 
all one-phase seminvariants had identical signs for 
different 'correct' solutions of a given structure. 

We also tested the three structures in the space 
group P212121 without NQRs in the phase annealing 
stage; the results were always inferior to those repor- 
ted in Table 3, but for the PEP1 structure the differen- 
ces were not significant. It is to be expected that the 
NQRs will become relatively less reliable the larger 
the structure, because of the 1IN term in the prob- 
ability expression compared to 1 / N  1/2 for TPRs. The 
NQRs are however essential for symmorphic space 
groups. 

For the P1 test structure (MBH2) the increase in 
the number of solutions obtained with phase anneal- 
ing was only sufficient to compensate for the extra 
computer time required (compared with the B = 0 
run). For the other six structures the phase annealing 
produced significant dividends, and for the largest 
structure studied (PEP1) increased the chance of 
finding a correct solution by more than an order of 
magnitude. 

Concluding remarks 

In addition to performing at least as well as our 
previous programs on each of the structures in the 
full test data bank, the phase annealing method has 
already been successful in solving eight large struc- 
tures with up to 180 atoms in the asymmetric unit 
which had resisted all previous efforts using a variety 
of programs including SHELXS-86. 

Phase annealing is also appropriate for the 
expansion of a partial structure which is too small 
for successful elucidation by tangent expansion fol- 
lowed by E-map recycling. Preliminary tests indicate 
that, instead of using a small number of fixed partial 
structure phases plus random starting values for the 
rest, it is more effective for all attempts to start from 
the same partial structure phases for all reflections. 
The inherent randomness of the phase annealing 
approach then ensures that each phase set follows a 
different refinement path, leading to effective explor- 
ation of phase space in the vicinity of the partial 
structure solution. The cooling schedule should be 
just 'warm' enough to ensure that not too many 
solutions are the same. 

The program described here is available in source 
form from the author as part (SHELXS) of the 
SHELX-90 system. Although designed with 
vectorizing computers in mind it is written entirely 
in Fortran 77 and runs on a wide variety of computers 
with little or no modification. A precompiled version 
is available for personal computers running the 
MSDOS operating system. 

I am grateful to Professor P. G. Jones and Professor 
E. Egert for many stimulating discussions, to the 
Gesellschaft fiir Wissenschaftliche Datenverar- 
beitung zu GSttingen for a generous allocation of 
computer time, and to the Verband der Chemischen 
Industrie and the Deutsche Forschungsgemeinschaft 
for unbureaucratic financial support. 
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Abstract 

A possible approach to direct phasing of quasicrystal 
diffraction data is described. The data are first con- 
verted to a set of structure-factor amplitudes of a 
multidimensional crystal. The Patterson function of 
the quasicrystal is used to derive the converting factor. 
A direct method is then used to solve the phase 
problem in multi-dimensional space. The method has 
been tested with a hypothetical one-dimensional 
quasicrystal yielding a satisfactory result. 

Introduction 

The recently discovered quasicrystals (Shechtman, 
Blech, Gratias & Cahn, 1984) belong to a new kind 
of substance between the crystalline and amorphous 
states. They have long-range orientational order as 
well as long-range quasiperiodicity. The incon- 
sistency of their symmetry with classical crystallogra- 
phy has drawn great attention from condensed-matter 
physicists and chemists. Determination of quasicrys- 
tal structures is important for understanding the 
properties or for exploring the applications of quasi- 
crystals. So far quasicrystal structure determination 
has mainly been performed by trial-and-error 
methods. One must first propose a structure model, 
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calculate the diffraction intensities and then compare 
with the experimental data. This is a tedious process; 
it resembles the structure analysis of crystals in the 
early days. During the last two decades X-ray analysis 
of crystal structures has achieved great progress owing 
to the development of direct methods (Woolfson, 
1987). Hence it is worth trying to apply direct methods 
to quasicrystal structures. However, the task is far 
from straightforward, since quasicrystals do not 
possess periodicity in the sense of classical crystal- 
lography. Use of direct methods in quasicrystal struc- 
ture analysis was proposed by Li Fang-hua, Wang 
Li-chen & Fan Hai-fu (1987). A structure-factor rela- 
tion for quasicrystals has been derived and a pre- 
liminary test result has been obtained. In the previous 
study, the shape factor for constructing a quasicrystal 
from a multi-dimensional (MD) crystal is assumed 
to be known in advance. However this is not true in 
practice. In order that direct methods can be useful 
in practice, this problem remains to be solved. In this 
paper, a method which makes use of the Patterson 
function is proposed to determine the shape factor. 
This enables the conversion of diffraction data from 
a three-dimensional (3D) quasicrystal to the corre- 
sponding MD crystal. Direct methods can then be 
used to solve the phase problem in MD space. 
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